

Easy Scale-up of Wurster Processes for Pellet Drug Layering and Taste Masking

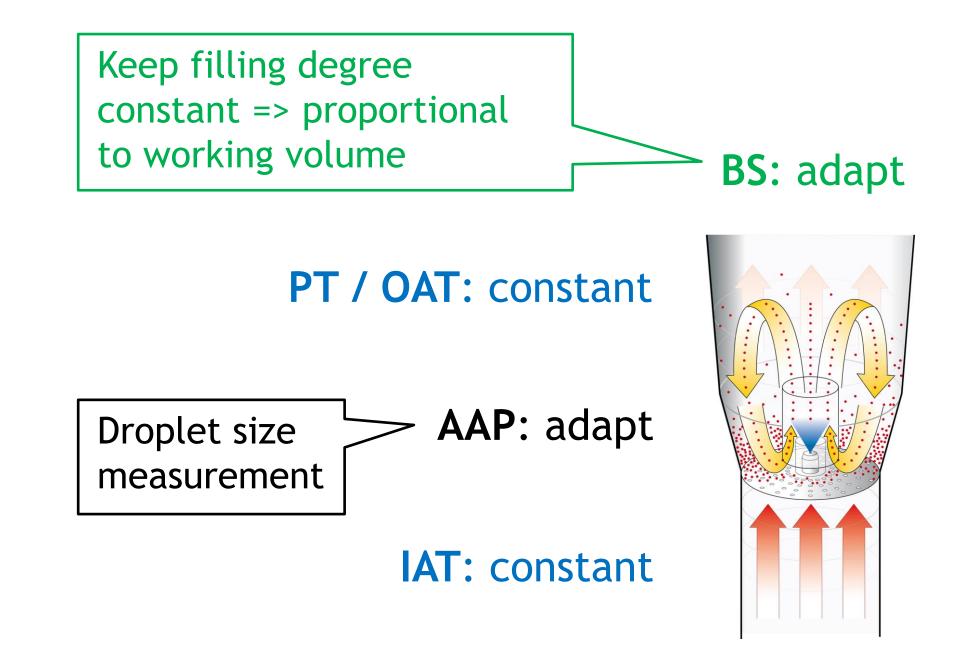
A. Grave; A. Rakotonirina | Glatt Pharmaceutical Services GmbH & Co. KG, Binzen, Germany

Introduction

- ➤ Bitter tasting active pharmaceutical ingredients (API) for children require effective taste masking.
- > Pellets are ideal dosage forms:
 - A pre-defined dose of API can be applied by layering
 - Small spherical particles, with uniform and smooth surface, and a narrow particle size distribution can be further coated with functional excipients [1] to achieve e.g. taste masking, enteric protection or the controlled release of the API in defined parts of the gastro-intestinal tract.
 - Production of different dosages appropriate for children by adapting the amount of pellets to be filled into capsules or sachets is easily possible.
 - Formulations of small-sized pellets offer a valuable base for increased compliance and improved age-appropriate dosage forms.

Objectives

- Manufacturing processes for pellet layering and coating are often considered as challenging, especially the scale-up from development scale to pilot and production scale [2, 3].
- In this work, a proven and established scale-up concept for pellet layering and coating applying the Wurster technology is presented.


Materials

- The poorly soluble API was layered on CELLETS® 350, followed by a seal coat (HPMC) and a taste masking coat (EC / HPMC), using Glatt's Wurster technology.
- The process was developed at the 0.5 1 kg scale (GPCG 1 / 2 / 3, 6" or 7" Wurster), scaled-up to the 40 kg pilot scale **in two trials** (GPCG 60, 18" Wurster) and then to the final production scale of 190 kg (GPCG 60, 32" Wurster) in **two trials**.
- >Important scale-up parameters are

 - ≻inlet air volume (IAV),
 - >spray rate (SR),
 - >temperatures (inlet air (IAT), product (PT), outlet air (OAT)),
 - >and atomisation air pressure (AAP) [Figure 1].
- ➤ Process parameters for the next process step were determined with a scale-up model equation, maintaining the inlet air velocity and evaporation capacity (product humidity) in the process [Table 1]. The final pellets were characterised for bulk density, residual moisture, yield, assay, [Table 2] dissolution [Figure 3], particle size [Figure 4] and ICH stability.

Scale-up concept - theory

Keep energy balance constant => proportional to inlet air volume

Keep inlet air velocity constant => proportional to bottom plate area: $\frac{m^3}{m^2} = \frac{m^3}{m^2*h} = \frac{m}{h}$

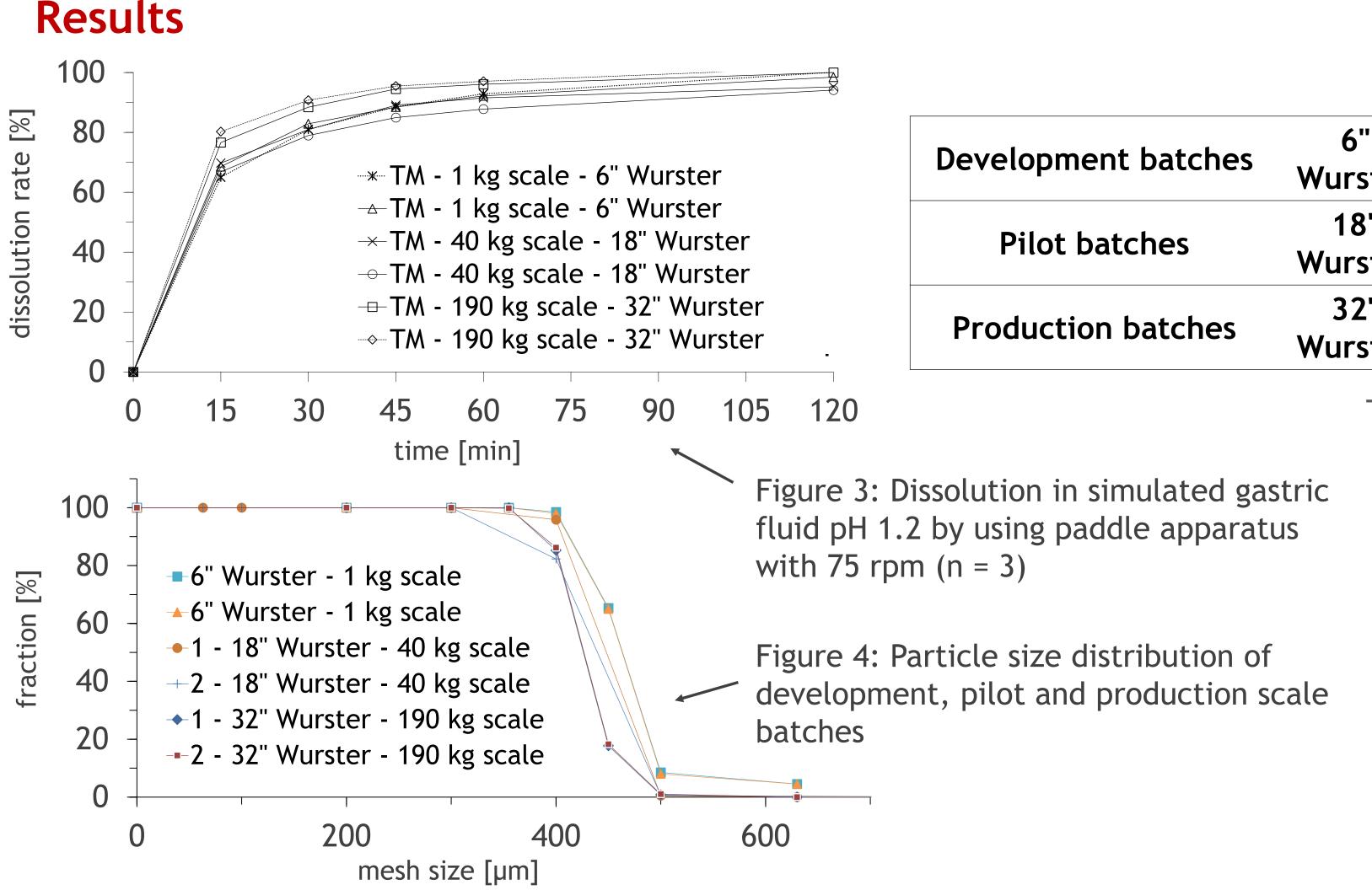


Figure 1: Illustration of relevant process parameters and their scale-up-concept (batch size (BS), inlet air volume (IAV), spray rate (SR), inlet air temperature (IAT), product temperature (PT), outlet air temperature (OAT), and atomisation air pressure (AAP))

Scale-up concept - process parameters

ер	: - process param	ieters	Batch size kg	~ Working volume	Inlet air temperature °C	Product temperature °C	Inlet air velocity m/s	= const.	Inlet air volume m³/h	Spray rate g/min	~ Bottom plate area
	Development batches 6" Wurster	applied values	1.1		47 - 48	36 - 37	1.17		80	5.3	
	Pilot batches 18" Wurster	calculated values	32		47 - 48	36 - 37	1.17		657	36 - 50	
	10 Walstel	applied values	39		45 - 48	36 - 38	1.16		650	47 - 54	

Table 1: Applied and calculated process parameters for development, pilot and production scale batches

- Two scale-up trials were performed in the 40 kg-pilot scale with yields of 98 99 %, assay values of 99 100 % and reproducible dissolution profiles within the specification.
- The scale-up to the production batch size of 190 kg was performed in two trials with comparable results.
- >All batches were within specification; product stability was proven by ICH stability testing (data not shown).
- Taste masking efficiency is demonstrated by dissolution testing in phosphate buffer pH 7,0 for 5 min (data not shown).

			Bulk density	Residual moisture (LOD)	Yield	Assay rel. to theory
			g/mL	%	%	%
Dovolopment batches	6"	1st batch	1.0	1.9	99.3	99.5
Development batches	Wurster	2nd batch	1.0	1.8	99.8	99.7
Pilot batches	18"	1st batch	0.9	0.7	98.1	99.9
Pilot batches	Wurster	2nd batch	0.9	1.0	99.6	100.0
Production batches	32"	1st batch	0.9	1.3	99.4	101.7
Production patches	Wurster	2nd batch	0.9	1.5	99.5	101.6

Table 2: Results for bulk density, residual moisture, yield and assay

Conclusion

- Taste masking of pellets by Wurster technology was successfully scaled-up to the production scale of 190 kg maintaining good yields, assay values and the intended dissolution profile.
- >Scale-up parameters for fluid bed processes can be efficiently pre-calculated.
- ➤The basis for scale-up and reliable processes in the production scale is a founded process development and optimisation in the development scale (e. g. 1 4 kg).

References

- 1. Palugan, L., Cerea, M.; Zema, L., Gazzaniga, A., Maroni, A. Coated pellets for oral colon delivery, Journal of Drug Delivery Science and Technology 25, (2015) 1-15.
- 2. Gavi, E., Dischinger, A., Scale-up of fluid bed granulation of an active formulation with a scale independent parameter and process model, Poster presentation, 4th European Conference on Pharmaceutics, 20 21 March 2023
- 3. Emike. N., Kulla, I., Maus, M., Staab, A., Schröder, D. A linear scale-up approach to fluid bed granulation, International Journal of Pharmaceutics 598 (2021) 120209